
36 | indePendenT Oracle users grOuP www.iOug.Org

Performance Considerations for
Web Applications
By dr. Paul dorsey & Michael rosenblum, dulcian, inc.

Many of the performance tuning techniques applied to client/server
applications that consisted of rewriting poorly written SQL code and
tuning the database itself are not helpful when dealing with Web
applications that are frequently unaffected by these performance
improvement approaches. This tip describes some of the most common
problem areas when dealing with Web application performance issues.

Typical Web Application Process Flow
Improving the performance of a slow Web application requires examination
of the entire system, not just the database. A typical 3-tier Web application
structure is shown in Figure 1.

 1. client 2. send data from 3. application 4. send data from 5. database
 client to app server server app server to dB

 9. data in 8. return data from 7. data in 6. return data from
 client app server to client application server dB to app server

Figure 1: Web Application Process Flow

Oracle TechnOlOgy BesT PracTices | 37

As shown in Figure 1, there are numerous possible places for Web
applications to experience bottlenecks or performance killers as described
in the following nine-step process:

Step 1: Code and operations executed on the client machine

Step 2: Transmission of client request to the application server

Step 3: Code in the application server executed as a formulation of the
client request to retrieve information from the database

Step 4: Transmission of request from application server to the database

Step 5: Database reception, processing and preparation of return
information to the application server

Step 6: Transmission over internal network of information from database
to the application server

Step 7: Application server processing of database response and
preparation of response transmission to the client machine

Step 8: Transmission of data from the application server to the client
machine

Step 9: Client machine processing of returned request and rendering of
application page in browser

Web Application Performance Problem Areas
Traditional tuning techniques only help with Step 5 and ignore all of the
other eight places where performance can degrade. This section describes
how problems can occur at each step of the process.

38 | indePendenT Oracle users grOuP www.iOug.Org

Step 1. Client Machine Performance Problems
The formulation of a request in the client is usually the least likely source
of system performance problems. However, it should not be dismissed
entirely. Using many modern AJAX architectures, it is possible to place so
much code in the client that a significant amount of time is required before
the request is transmitted to the application server.

This is particularly true for underpowered client machines with inadequate
memory and slow processors.

Step 2. Client-to-Application Server Transmission Problems
Like the client machine itself, the transmission time between the client
machine and the application server is a less common cause of slowly
performing Web applications. However, if attempting to transmit a large
amount of information, the time required to do so over the Internet may
be affected. For example, uploading large files or transmitting a large block
of data may slow down performance.

Step 3. Application Server Performance Problems
The application server itself rarely causes significant performance
degradation. For computationally intensive applications such as large
matrix inversions for linear programming problems, some performance
slowdowns can occur, but this is less likely to be a significant factor in
poorly performing applications.

Step 4. Application Server to Database Transmission Problems
Transmission of data from the application server to the database with 1 GB
or better transmission speeds might lead you to ignore this step in the process.
It is not the time needed to move data from the application server to the
database that causes performance degradation, but the high number of
transmission requests. The trend in current Web development is to make
applications database-independent. This sometimes results in a single request
from a client requiring many requests from the application server to the

Oracle TechnOlOgy BesT PracTices | 39

database in order to fulfill. What needs to be examined and measured is the
number of roundtrips made from the application server to the database.

Inexpert developers may create routines that execute so many roundtrips
that there is little tuning that a DBA can do to yield reasonable
performance results. It is not unusual for a single request from the client to
generate hundreds (if not thousands) of round trips from the application
server to the database before the transmission is complete. Java developers
who think of the database as nothing more than a place to store persistent
copies of their classes use Getters and Setters to retrieve and/or update
individual attributes of objects. This type of development can generate a
round trip for every attribute of every object in the database, which means
that inserting a row into a table with 100 columns results in a single Insert
followed by 99 Update statements. Retrieving this record from the database
then requires 100 independent queries.

In the application server, identifying performance problems involves
counting the number of transmissions made. The accumulation of time
spent making round trips is one of the most common places where Web
application performance can suffer.

Step 5. Database Performance Problems
In the database itself, it is important to look for the same things that
cause client/server applications to run slowly. However, additional Web
application features can cause other performance problems in the database.
Most Web applications are stateless, meaning that each client request is
independent. Developers do not have the ability to use package variables
that persist over time. Consequently, when a user logs into an application,
he or she will be making multiple requests within the context of the sign-
on operation. The information pertaining to that session must be retrieved
at the beginning of every request and persistently stored at the end of every
request. Depending upon how this persistence is handled in the database,
a single table may generate massive I/O demands resulting in redo logs

40 | indePendenT Oracle users grOuP www.iOug.Org

full of information that may cause contention on tables where session
information is stored.

Step 6. Database-to-Application Server Transmission Problems
Transferring information from the database back to the application
server (similar to Step 4) is usually not problematic from a performance
standpoint. However, performance can suffer when a Java program requests
a single record from a table. If the entire table contents are brought into the
middle tier and then filtered to find the appropriate record, performance
will be slow. The application can perform well as long as data volumes are
small. As data accumulates, the amount of information transferred to the
application server becomes too large, thus affecting performance.

Step 7. Application Server Processing Performance Problems
Processing the data from the database can be resource-intensive. Many
database-independent Java programmers minimize work done in the
database and execute much of the application logic in the middle tier. In
general, complex data manipulation can be handled much more efficiently
with database code. Java programmers should minimize information
returned to the application server and, where convenient, use the database
to handle computations.

Step 8. Application Server-to-Client Machine Transmission Problems
This area is one of the most important for addressing performance
problems and often receives the least attention. Industry standards often
assume that everyone has access to high performance client machines so
that the amount of data transmitted from the application server to the
client is irrelevant. As the industry moves to Web 2.0 and AJAX, very rich
UI applications create more and more bloated screens of 1 MB or more.
Some of the AJAX partial page refresh capabilities mitigate this problem
somewhat (100-200K). Since most Web pages only need to logically
transmit an amount of information requiring 5K or less, the logical round
trips on an open page should be measured in tens or hundreds of characters
rather than megabytes. Transmission between the application server and the

Oracle TechnOlOgy BesT PracTices | 41

client machine can be the most significant cause of poor Web application
performance. If a Web page takes 30 seconds to load, even if it is prepared
in five rather than 10 seconds, users will not experience much of a benefit.
The amount of information being sent must be decreased.

Step 9. Client Performance Problems
How much work does the client need to do to render a Web application
page? This area is usually not a performance killer, but it can contribute to
poor performance. Very processing-intensive page rendering can result in
poor application performance.

Conclusions
There is much more to tuning a Web application than simply identifying
slow database queries. Changing database and operating system parameters
will only go so far. The most common causes of slow performance are as
follows.

Excessive round trips from the application server to the database - Ideally,
each UI operation should require exactly one round trip to the database.
Sometimes, the framework (such as ADF) will require additional round
trips to retrieve and persist session data. Any UI operation requiring more
than a few round trips should be carefully investigated.

Large pages sent to the client - Developers often assume that all of
the system users have high-speed Internet connections. Everyone has
encountered slow loading Web pages taking multiple seconds to load.
Once in a while, these delays are not significant. However, this type of
performance degradation (waiting three seconds for each page refresh)
in an application such as a data entry intensive payroll application is
unacceptable. Applications should be architected to take into account the
slowest possible network to support when testing the system architecture
for suitability in slower environments.

42 | indePendenT Oracle users grOuP www.iOug.Org

Performing operations in the application server that should be
done in the database - For large, complex systems with sufficient data
volumes, complete database independence is very difficult to achieve.
The more complex and data-intensive a routine, the more likely it is that
it will perform much better in the database. For example, the authors
encountered a middle tier Java routine that required 20 minutes to run.
This same routine ran in 2/10 of a second when refactored in PL/SQL and
moved to the database.

Poorly written SQL and PL/SQL routines - In some organizations, this
may be the No. 1 cause of slowly performing Web applications. This
situation often occurs when Java programmers are also expected to write a
lot of SQL code. In most cases, the performance degradation is not caused
by a single slow running routine but a tendency to fire off more queries
than are needed.

Keeping all nine of the potential areas for encountering performance
problems in mind and investigating each one carefully can help to identify
the cause of a slowly performing Web application and point to ways in
which that performance can be improved.

Oracle TechnOlOgy BesT PracTices | 43

n n n About the Author
Dr. Paul Dorsey is the founder and president of dulcian, inc. an Oracle consulting firm
specializing in business rules and web-based application development. he is the chief architect
of dulcian’s Business rules information Manager (BriM®) tool. dr. dorsey is the co-author
of seven Oracle Press books on designer, database design, developer, and Jdeveloper, which
have been translated into nine languages as well as the wiley Press book PL/SQL for Dummies.
dr. dorsey is an Oracle ace director. he is president emeritus of nyOug and the associate editor
of the international Oracle user group’s SELECT Journal. in 2003, dr. dorsey was honored
by OdTug as volunteer of the year and as Best speaker (Topic & content) for the 2007
conference, in 2001 by iOug as volunteer of the year and by Oracle as one of the six initial
honorary Oracle 9i certified Masters. he is also the founder and chairperson of the OdTug
symposium, currently in its ninth year. dr. dorsey’s submission of a survey generator built
to collect data for The Preeclampsia Foundation was the winner of the 2007 Oracle Fusion
Middleware developer challenge and Oracle selected him as the 2007 Pl/sQl developer of
the year.

Michael Rosenblum is a development dBa at dulcian, inc. he is responsible for system
tuning and application architecture. he supports dulcian developers by writing complex Pl/sQl
routines and researching new features. rosenblum is the co-author of PL/SQL for Dummies
(wiley Press, 2006). he is a frequent presenter at various regional and national Oracle user
group conferences. in his native ukraine, he received the scholarship of the President of
ukraine, a master’s degree in information systems, and a diploma with honors from the Kiev
national university of economics.

