IS

June 27 - July 1 = Marriott Wardman Park Hotel = Washington, D.C.

ODTUG 2010
Performance,
Scalability
& Security
Symposium

June 27, 2010
Washington, DC

http://www.odtugkaleidoscope.com/index.html

Welcome!

m This 1s the 11th ODTUG Symposium
m 1999-2004 - 5 Business Rules Symposiums

m 2005 - Best Practices in Software Architecture Symposium
m 2006 — Web Architecture Symposium
m 2007 — Fusion Symposium
m 2008 — Fusion Middleware Best Practices Symposium
m [ast Year — Web Architecture Symposium
m Next Year — 22°°??
m Today's presentations will include:
m Multiple topics related to performance, scalability & security
m Ask-the-Experts Panel

Thank You
+ODTUG

“*Oracle Corporation

“*Your Conference Connection (YCC)

0
Dﬂ rﬂ{plﬁ‘lﬁ f
—‘%i; Gt

EXCELLENCE
is never

Symposium Agenda

8:30-8:45 AM — Introduction/Overview

m Dr. Paul Dorsey - Dulcian, Inc.

8:45-9:45 AM— Performance Tuning Web
Applications

m Dr. Paul Dorsey & Michael
Rosenblum — Dulcian, Inc.

9:45-10:45 AM — Oracle Data Mining
11g: Overview, Demos, ExaData and
Road Map

m Charlie Berger, Oracle Corporation

10:45-11:00 AM - BREAK

11:00 AM -12:00 Noon — WebLogic
Server Application Security —
Implementing the Superstition in
JDeveloper

B Peter Koletzke — Quovera

® Duncan Mills — Oracle Corporation

Noon — 1:00PM LUNCH

m 1:00-2:00 PM — Messed Up Apps: A
Study of Performance Anti-Patterns

m Cary Millsap — Method R

m 2:00-3:00 PM — Take a LLoad Off:
Load Testing Your Web
Applications: Oracle APEX|
JDeveloper, Web Services, etc.

m Chris Muir — SAGE Computing
Services

3:00-3:15 PM - BREAK

m 3:15-4:00 PM
Ask the Experts Panel

Performance Tuning
Web Applications

Dr. Paul Dorsey & Michael Rosenblum
Dulcian, Inc.
www.dulcian.com

U0TUG &

June 27 = July 1 = Marriott Wardman Park Hotel = Washington, D.C.

June 27, 2010

5o0f41

http://www.odtugkaleidoscope.com/index.html

g Why Performance Tuning Falls

¢ We are solving the wrong problem.
¢ Tuning:
» Usually makes the database run better.
» Focuses on poorly running SQL.

¢ Web applications are frequently unaffected by
these performance improvement approaches.

¢ Need to examine the entire system, not just the
database.

6 of 41

~——DULCIAN: Web Application
Architecture

3. Application

Server
4. Send data from

2. Send data from app server to database
Client to app server

1. Client :
—— D —| 5. Database
I—)>
L'_J
= 8. Return data from —
B app server to client / 6. Return Data from
<l D_ata In database to app server
client 7. Data in
Application Server
“0\\@“
e
- \\O
e\
00!
T

70f41

p A Steps 1 & 9 - Client
1. u.em’_, —>-
=
9. Datam
client

¢ Unlikely source of problems.
» Should not be dismissed entirely.

» Using AJAX architectures, it Is possible to place so
much code In the client that a significant amount of
time is required before the request Is transmitted to
the application server.

¢ Beware of underpowered client machines with
Inadequate memory and slow processors.

8 of 41

Ca-buL Step 2 - Client to
Application Server

2. Send data from
Client to App Server

L
TT——n

¢ Less common cause of performance problems
¢ Transmitting large amounts of information over
the Internet may cause problems.
» Uploading large files
» Transmitting a large block of data

9 of 41

o, - Steps 3 & 7 Application Server

Ll Processing Performance
3. Application Problems
Server
——"
e B ——
: —

7. Data in
Application Server

¢ Processing can be resource-intensive.

¢ Java programmers minimize database application logic
In the middle tier.

¢ Complex data manipulation can be handled much more
efficiently with database code.

» Thick database approach is the key to efficiently performing
web applications.

10 of 41

o ~ Step 4 - Application Server
to Database

4. Send data from
App Server to Database

’—» ——
—1

¢ Not instantaneous (but really fast)

¢ High number of transmission requests are the #1 cause
of performance problems.
¢ Database-independence Is not a good idea.

» Single request from a client may require many requests from
the application server to the database in order to fulfill.

¢ Examine and measure the number of round-trips from
application server to database.

11 of 41

A5 ' Step 5 - Database
Performance Problems

[| =——= -

< Use traditional tuning.

¢ Beware of stateless implementation.

» Information pertaining to a particular session must be
retrieved at the beginning of every request and
persistently stored at the end of every request.

» Single table may generate massive 1/O
= Redo logs
= Block contention

12 of 41

p - TULLIANY step 6 - Database to Application
Server Transmission Problems

" =
—

6. Return Data from
DB to App Server

¢ Rare problem

¢ Beware of unnecessary data movement.
» One record Is needed and the whole table Is sent.

13 of 41

- pouUL © Step 8 - Application Server to
Client Transmission Problems

=l

8. Return data from
App Server to client

& #2 cause of performance problems

¢ Keep pages small.
» Not too many fields
» Not too much AJAX or JavaScript
» Not too big a tree
» Not too much data in a scrolling block
» NoO Images, or other unnecessary information

¢ Measure size of page.

14 of 41

). Locating Slow
Performance Causes

¢ Embed timers into a system to detect where In
the nine possible steps the application
performance is degrading.

¢ Strategically placed timers will indicate how
much time Is spent at any one of the steps in the

)

total process.

15 of 41

) -

Common Causes of
Performance Problems

¢ The most common causes of slow system
performance are:

» 1. Excessive round-trips from the application server
to the database

> 2. Large pages sent to the client
» 3. Performing operations in the application server

that should be done in the database

> 4. Poorly written SQL and PL/SQL routines W

16 of 41

17 of 41

Iming Language Elements

¢ Command: Atomic part of the process (any command
on any tier)

¢ Step: Complete processing cycle in one direction
(always one-way)

» Can either be a communication step between one tier and
another, or a set of steps within the same tier.

» Step consists of a number of commands.

Request: Action consisting of a number of steps. A
request Is passed between different processing tiers.

Round-trip: Complete cycle from the moment the
request leaves the tier to the point when it comes back
with some response information.

18 of 41

O-step or
5 round-
trip
structure

System Tuning for 3-tier Application

Client

(with numbers!)

19 of 41

-1

Actions In

5 Round-Tri

0 Structure

Client Level

¢ 1. From request
Initiation to end of
processing
» User clicks button
> Response Is
displayed
¢ 2. From request to
application server
to response receipt
» Start of servlet call
» End of servlet call

Application Level

¢ 3. From request
acceptance to
moment it 1S sent
back

» Start of processing
In servlet

» End of processing
In servlet

¢ 4. From request
sent to database

> Start of JDBC call
> End of JDBC call

Database Level

¢ 5. From request
acceptance to
sending back the
response
» Start block

> End of block

20 0f 41

g Review

Topics Covered Still to discuss

1. Steps in web 1. SQL tuning
application process ||, Application server /

2. Places where database
performance can communication
suffer tuning

3. Measuring 3. Managing persistent
performance layer

21 0f 41

dab. SQL Tuning: REMEMBER!!

¢ 1. Use bind variables. || ® 1. Don’t build SQL in JAVA.
¢ 2. Use bind variables. || & 2. Don’t build SQL in JAVA.
¢ 3. Use bind variables. || 3. Don’t build SQL in JAVA.
¢ 4. Use bind variables. || 4. Don’t build SQL in JAVA.
¢ 5. Use bind variables. || ¢ 5. Don’t build SQL in JAVA.
¢ 6. Use bind variables. || ¢ 6. Don’t build SQL in JAVA.
¢ /. Use bind variables. || 7. Don’t build SQL in JAVA.
© Tom Kyte © M. Rosenblum

22 of 41

s V Simple Case

¢ The problem:

» Value lists are explicitly hard-coded across the
system
« Difficult to determine what exactly is used
= Hard to maintain
= Data-dependent (cannot be cached)

¢ The solution — single tuning point!
» Universal Value List Builder

wﬁ\\\;

O b

\
23 0f 41

Universal Value List (1)

¢ Specify exactly what Is needed as output
and declare the corresponding collection:

Create type lov oty 1s object
(1d nr NUMBER,
display tx VARCHARZ (250)) ;

Create type lov nt
as table of lov oty;

24 of 41

s P Universal Value List (2)
¢ Write a PL/SQL function to hide all required logic:

function f getLov nt
(1 table tx,1 1d tx,1 display tx,1 order tx)
return lov nt 1s
v_out nt lov nt := lov nt();
begin
execute 1mmediate
'select lov oty ('
|11 1d tx|[',"'||1 display tx]||
")
' from '| |1 table tx]||
' order by '||1 order tx
bulk collect into v_out nt;
return v_out nt;

end;
25 of 41

ap. Universal Value List (3)
¢ Test SQL statement with the following code:

select i1d nr, display tx

from table (
cast (f getLov nt
(:1, —-- 'emp'
:2, —— 'empno'
:3, ——'ename||''-
| I | | |:j C)k) 1
:4 —- 'ename'

)

as 1ov;nt)

)

26 of 41

LT V Complex Case

The problem: @ v 4
> Users upload CSV/-files éyﬁ@/’

= Name of file defines type %

= Column headers map directly to table columns.
= One row of file could mean multiple inserts

¢ \Wrong solution
> Parse file in the middle-tier and build inserts.

< Right solution:
> Load file to the database as CLOB.
> Build all inserts in the database.

27 of 41

- —

P Build Inserts

Declare
type integer tt 1s table of integer;
v_cur tt integer tt;
Begin
for r in v _groupRow tt.first..v groupRow tt.last loop
v_cur_ tt(r):=DBMS SQL.OPEN CURSOR;
for ¢ in c¢ cols (v _mapRows tt(r)) loop
for 1 in v _header tt.first..v header tt.last loop
1f v _header tt(i).text=c.name tx then

v _col tt(i):=c;
v _col tx:=v col tx||',"'"[|v _col tt(1i).viewcol tx;
v val tx:=v val tx||',:'[|v _col tt(1).viewcol tx;
end if;
end loop;
end loop;
v_sql tx:='insert into '||v _map rec.view_ tx]| |

"('"|lv_col tx||') values('||v_value tx||')"';
DBMS SQL.PARSE (v_cur tt(r),v_sql tx,DBMS SQL.NATIVE) ;
end loop;

28 of 41

—

=) Process Data

for 1 1n 2..v _row tt.count
loop

for r 1in
v_groupRow tt.first..v groupRow tt.last

loop
for ¢ in v _col tt.first..v col tt.last
loop
1f v col tt(c).1id = v mapRows tt(r) then
DBMS SQL.BIND VARIABLE (v_cur tt(r),
'":'"||v_col tt(c).viewcol tx,
v_data tt(c) .text);
end 1°f;
end loop;
v_nr:=dbms sql.execute(v_cur tt(r));
end loop;

end loop;

29 of 41

(R—

il Application Server / Database

Critical success factor — managing database sessions:
» Almost impossible to have one session per connection
» Cost of opening/closing sessions is high.

¢ Opportunity:

» Total number of physical sessions at any point in time is fairly
small.

¢ Good i1dea:

> Create connection pool with a fixed number of connections
(using Autoextend option). .

» Serve them to Incoming requests as needed.

¢ Problems:

> A single physical session can serve requests from dlfferent
logical sessions at different points in time.

> Cannot trust ANYTHING defined at the session level.

30 of 41

ol Connection Pooling (1)

¢ Packaged variables cleanup

begin
dbms session.reset package;
dbms session.free unused user memory;

end;

31lof41

» —

ol Connection Pooling (2)
¢ Temporary tables cleanup

procedure p truncate is
v_exist yn varchar2(1l);
Begin
select 'Y' into v _exist yn
from vSsession s, vStempseg usage u
where s.audsid = SYS CONTEXT ('USERENV',6 'SESSIONID')
and s.saddr = u.session_addr
and u.segtype = 'DATA'
and rownum = 1;
for ¢ in (select table name from user table

where temporary = 'Y"
and duration = 'SYS$SSESSION') loop
execute immediate 'truncate table '||c.table name;

end loop;
end;

32 0f 41

By LHAN: Managing Persistent Layer

& Client/Server & \Web - idea
> Temporary table with > Create persistent table
supporting information - Add session ID
(one row per session) > Estimate system could

slow down 3-5%

& Web - real life

» 50%-200% slower
(only at peak times)

» Read - from support area.

» Write — via the engine:

= Get action from the
application

. Modify support area » Workload limit after which
. Send response to the the whole system started to
application fall apart
¢ Reason
> Eliminates about 75% of I‘ I
repeated requests

330f41

ap. Why is performance affected? (1)

¢ Database running in ARCHIVELOG
» All DML against SUPPORT table recorded
> Filled up about 85% of all logs!

¢ All support changes must be persistent.
» Extra COMMITS occurred
» LOG FILE SYNC wait event count skyrocketed

¢ Table had primary key (ID from a sequence)

» Due to DML activity from hundreds of sessions, every
15 minutes, the database logged a deadlock.

> Very high contention on some index blocks

34 of 41

—

2.

Why Is performance affected? (2)

o

¢ Cumulative heavy 1/0O load , P
» Individual requests take more time. -
» Sessions were not released from connection pool fast enough.
» Total number of simultaneous sessions is 4 times more than

estimated.
¢ Each session used more memory, more temporary
segments, etc.

» Slowed down the system even more

» Especially true for I/O operations (since there were more
simultaneous requests).

» Quickly spirals into a slow-down and eventual stoppage of the
system

350f41

ap. Why is performance affected? (3)

¢ Database resources quickly became over-utilized
just by making a table persistent with a session
key.
¢ Two core Issues:
» 1. How to decrease 1/0O?
» 2. How to resolve index contention?

36 of 41

 —

il Solution

¢ Create a separate database instance
» New instance runs in NOARCHIVELOG mode
» New Instance has only one schema.
» That schema contains only one table: SUPPORT INFO

» SUPPORT INFO table is hash-partitioned by session ID (1024
partitions)

> All indexes are local.
¢ Main schema has a database link and synonym

» Everything appears as though nothing has changed.

» All requests to the support table must include session ID (to use
local indexes).

» Some rewrite was required to enforce this rule.

37 of 41

 —

A Result

¢ System ran as fast as originally predicted.

» Extra waits caused by data cases via DBLInk were negligible
(less than 0.01/request - average of 3000 requests/hour).

» No time lost writing logs

> Less I/O = less sessions = less resources used = less waits
—> faster response = less sessions ...

¢ Using a large number of partitions, less chances of
creating a “hot block”, since all indexes were local.

¢ Lessons learned:
» In the Oracle environment, everything is linked together.
> Any changes can lead to a “domino effect.”
y g ‘_q /

W
38 of 41

V. Conclusions

¢ Keep all nine of the potential areas for
encountering performance problems in mind.

¢ Investigate each one carefully to discover ways
In which performance can be improved.

¢ It Is not just the database.

39 of 41

Z 77777 Dulcian’s BRIM® Environment

Full business rules-based development
environment

& For Demo
> Write “BRIM” on business card

¢ Dulcian Vendor Presentation

> “Build Amazing Web 2.0 Applications using only
PL/SQL”

> Tuesday June 29t at 9:45AM in Delaware B

p -), JLCIAN: Contact Information

¢ Dr. Paul Dorsey — paul_dorsey@dulcian.com
¢ Michael Rosenblum — mrosenblum@dulcian.com
¢ Dulcian website - www.dulcian.com

Design Using UML| ReveloperAdvanced
Forms & Reporis

| ORACLEY: Oracle JDeveloper 10g
JDeveloper Handbook ‘
Handbook

Designer
Handbook

e e e
‘
. —

rscle N O A

hbie s mimibe

.........

|_atest book:
Oracle PL/SQL for Dummies

41 of 41

