
ODTUG 2010

Performance,

Scalability

& Security

Symposium

June 27, 2010

Washington, DC

http://www.odtugkaleidoscope.com/index.html

Welcome!

 This is the 11th ODTUG Symposium

 1999-2004 - 5 Business Rules Symposiums

 2005 - Best Practices in Software Architecture Symposium

 2006 – Web Architecture Symposium

 2007 – Fusion Symposium

 2008 – Fusion Middleware Best Practices Symposium

 Last Year – Web Architecture Symposium

 Next Year – ??????

 Today's presentations will include:

 Multiple topics related to performance, scalability & security

 Ask-the-Experts Panel

Thank You

ODTUG

Oracle Corporation

Your Conference Connection (YCC)

Symposium Agenda

 8:30-8:45 AM – Introduction/Overview
 Dr. Paul Dorsey - Dulcian, Inc.

 8:45-9:45 AM– Performance Tuning Web
Applications
 Dr. Paul Dorsey & Michael

Rosenblum – Dulcian, Inc.

 9:45-10:45 AM – Oracle Data Mining
11g: Overview, Demos, ExaData and
Road Map
 Charlie Berger, Oracle Corporation

10:45-11:00 AM - BREAK

 11:00 AM -12:00 Noon – WebLogic
Server Application Security –
Implementing the Superstition in
JDeveloper
 Peter Koletzke – Quovera

 Duncan Mills – Oracle Corporation

Noon – 1:00PM LUNCH

 1:00-2:00 PM – Messed Up Apps: A
Study of Performance Anti-Patterns
 Cary Millsap – Method R

 2:00-3:00 PM – Take a Load Off:
Load Testing Your Web
Applications: Oracle APEX,
JDeveloper, Web Services, etc.
 Chris Muir – SAGE Computing

Services

3:00-3:15 PM - BREAK

 3:15-4:00 PM

Ask the Experts Panel

5 of 41

Performance Tuning

Web Applications

Dr. Paul Dorsey & Michael Rosenblum

Dulcian, Inc.

www.dulcian.com

June 27, 2010

http://www.odtugkaleidoscope.com/index.html

6 of 41

Why Performance Tuning Fails

We are solving the wrong problem.

Tuning:

Usually makes the database run better.

 Focuses on poorly running SQL.

Web applications are frequently unaffected by

these performance improvement approaches.

Need to examine the entire system, not just the

database.

7 of 41

Web Application

Architecture

3. Application

Server

2. Send data from

Client to app server

5. Database

6. Return Data from

database to app server

1. Client

4. Send data from

app server to database

7. Data in

Application Server

8. Return data from

app server to client
9. Data in

client

8 of 41

Unlikely source of problems.

 Should not be dismissed entirely.

Using AJAX architectures, it is possible to place so
much code in the client that a significant amount of
time is required before the request is transmitted to
the application server.

Beware of underpowered client machines with
inadequate memory and slow processors.

Steps 1 & 9 - Client

1. Client

9. Data in

client

9 of 41

Step 2 - Client to

Application Server

Less common cause of performance problems

Transmitting large amounts of information over

the Internet may cause problems.

Uploading large files

 Transmitting a large block of data

2. Send data from

Client to App Server

10 of 41

Steps 3 & 7 Application Server

Processing Performance

Problems

 Processing can be resource-intensive.

 Java programmers minimize database application logic
in the middle tier.

 Complex data manipulation can be handled much more
efficiently with database code.

 Thick database approach is the key to efficiently performing
web applications.

3. Application

Server

7. Data in

Application Server

11 of 41

Step 4 - Application Server

to Database

 Not instantaneous (but really fast)

 High number of transmission requests are the #1 cause
of performance problems.

 Database-independence is not a good idea.

 Single request from a client may require many requests from
the application server to the database in order to fulfill.

 Examine and measure the number of round-trips from
application server to database.

4. Send data from

App Server to Database

12 of 41

Step 5 - Database

Performance Problems

Use traditional tuning.

Beware of stateless implementation.

 Information pertaining to a particular session must be
retrieved at the beginning of every request and
persistently stored at the end of every request.

 Single table may generate massive I/O

 Redo logs

 Block contention

5.

Database

13 of 41

Step 6 - Database to Application

Server Transmission Problems

Rare problem

Beware of unnecessary data movement.

One record is needed and the whole table is sent.

6. Return Data from

DB to App Server

14 of 41

Step 8 - Application Server to

Client Transmission Problems

 #2 cause of performance problems

 Keep pages small.
 Not too many fields

 Not too much AJAX or JavaScript

 Not too big a tree

 Not too much data in a scrolling block

 No images, or other unnecessary information

 Measure size of page.

8. Return data from

App Server to client

15 of 41

Locating Slow

Performance Causes

Embed timers into a system to detect where in

the nine possible steps the application

performance is degrading.

Strategically placed timers will indicate how

much time is spent at any one of the steps in the

total process.

16 of 41

Common Causes of

Performance Problems

The most common causes of slow system

performance are:

 1. Excessive round-trips from the application server

to the database

 2. Large pages sent to the client

 3. Performing operations in the application server

that should be done in the database

 4. Poorly written SQL and PL/SQL routines

17 of 41

Measuring Performance

18 of 41

Timing Language Elements

 Command: Atomic part of the process (any command
on any tier)

 Step: Complete processing cycle in one direction
(always one-way)
 Can either be a communication step between one tier and

another, or a set of steps within the same tier.

 Step consists of a number of commands.

 Request: Action consisting of a number of steps. A
request is passed between different processing tiers.

 Round-trip: Complete cycle from the moment the
request leaves the tier to the point when it comes back
with some response information.

19 of 41

System Tuning for 3-tier Application

(with numbers!)

9-step or

5 round-

trip

structure

80 sec
100 sec

75 sec
50 sec
40 sec

40 sec

4 sec

6 sec

15 sec

10 sec

2 sec

3 sec

5 sec

15 sec

Client
App

server
DATABASE

Client
App

server
DATABASE

20 of 41

Actions in

5 Round-Trip Structure

Client Level

 1. From request

initiation to end of

processing

 User clicks button

 Response is

displayed

 2. From request to

application server

to response receipt

 Start of servlet call

 End of servlet call

Application Level

 3. From request
acceptance to
moment it is sent
back

 Start of processing
in servlet

 End of processing
in servlet

 4. From request
sent to database

 Start of JDBC call

 End of JDBC call

Database Level

 5. From request
acceptance to
sending back the
response

 Start block

 End of block

21 of 41

Review

Topics Covered

1. Steps in web

application process

2. Places where

performance can

suffer

3. Measuring

performance

Still to discuss

1. SQL tuning

2. Application server /

database

communication

tuning

3. Managing persistent

layer

22 of 41

SQL Tuning: REMEMBER!!!

 1. Use bind variables.

 2. Use bind variables.

 3. Use bind variables.

 4. Use bind variables.

 5. Use bind variables.

 6. Use bind variables.

 7. Use bind variables.

© Tom Kyte

 1. Don’t build SQL in JAVA.

 2. Don’t build SQL in JAVA.

 3. Don’t build SQL in JAVA.

 4. Don’t build SQL in JAVA.

 5. Don’t build SQL in JAVA.

 6. Don’t build SQL in JAVA.

 7. Don’t build SQL in JAVA.

© M. Rosenblum

23 of 41

Simple Case

The problem:

Value lists are explicitly hard-coded across the

system

 Difficult to determine what exactly is used

 Hard to maintain

 Data-dependent (cannot be cached)

The solution – single tuning point!

Universal Value List Builder

24 of 41

Universal Value List (1)

Specify exactly what is needed as output
and declare the corresponding collection:

Create type lov_oty is object

(id_nr NUMBER,

display_tx VARCHAR2(256));

Create type lov_nt

as table of lov_oty;

25 of 41

Universal Value List (2)

 Write a PL/SQL function to hide all required logic:

function f_getLov_nt

(i_table_tx,i_id_tx,i_display_tx,i_order_tx)

return lov_nt is

v_out_nt lov_nt := lov_nt();

begin

execute immediate

'select lov_oty('

||i_id_tx||','||i_display_tx||
')'||

' from '||i_table_tx||

' order by '||i_order_tx

bulk collect into v_out_nt;

return v_out_nt;

end;

26 of 41

Universal Value List (3)

Test SQL statement with the following code:

select id_nr, display_tx

from table(

cast(f_getLov_nt

(:1, -- 'emp'

:2, -- 'empno'

:3, --'ename||''-
''||job'

:4 -- 'ename‘
)

as lov_nt)

)

27 of 41

Complex Case

The problem:

Users upload CSV-files

 Name of file defines type

 Column headers map directly to table columns.

 One row of file could mean multiple inserts

Wrong solution

 Parse file in the middle-tier and build inserts.

Right solution:

 Load file to the database as CLOB.

 Build all inserts in the database.

28 of 41

Build Inserts
Declare

type integer_tt is table of integer;

v_cur_tt integer_tt;
Begin

for r in v_groupRow_tt.first..v_groupRow_tt.last loop

v_cur_tt(r):=DBMS_SQL.OPEN_CURSOR;
for c in c_cols(v_mapRows_tt(r)) loop

for i in v_header_tt.first..v_header_tt.last loop

if v_header_tt(i).text=c.name_tx then

v_col_tt(i):=c;

v_col_tx:=v_col_tx||','||v_col_tt(i).viewcol_tx;

v_val_tx:=v_val_tx||',:'||v_col_tt(i).viewcol_tx;

end if;

end loop;

end loop;

v_sql_tx:='insert into '||v_map_rec.view_tx||

'('||v_col_tx||') values('||v_value_tx||')';

DBMS_SQL.PARSE(v_cur_tt(r),v_sql_tx,DBMS_SQL.NATIVE);

end loop;

29 of 41

Process Data
for i in 2..v_row_tt.count

loop

for r in
v_groupRow_tt.first..v_groupRow_tt.last

loop

for c in v_col_tt.first..v_col_tt.last

loop

if v_col_tt(c).id = v_mapRows_tt(r) then

DBMS_SQL.BIND_VARIABLE(v_cur_tt(r),

':'||v_col_tt(c).viewcol_tx,

v_data_tt(c).text);

end if;

end loop;

v_nr:=dbms_sql.execute(v_cur_tt(r));

end loop;

end loop;

30 of 41

Application Server / Database

 Critical success factor – managing database sessions:
 Almost impossible to have one session per connection

 Cost of opening/closing sessions is high.

 Opportunity:
 Total number of physical sessions at any point in time is fairly

small.

 Good idea:
 Create connection pool with a fixed number of connections

(using Autoextend option).

 Serve them to incoming requests as needed.

 Problems:
 A single physical session can serve requests from different

logical sessions at different points in time.

 Cannot trust ANYTHING defined at the session level.

31 of 41

Connection Pooling (1)

Packaged variables cleanup

begin

dbms_session.reset_package;

dbms_session.free_unused_user_memory;

end;

32 of 41

Connection Pooling (2)

 Temporary tables cleanup

procedure p_truncate is

v_exist_yn varchar2(1);

Begin

select 'Y' into v_exist_yn

from v$session s, v$tempseg_usage u

where s.audsid = SYS_CONTEXT('USERENV','SESSIONID')

and s.saddr = u.session_addr

and u.segtype = 'DATA'

and rownum = 1;

for c in (select table_name from user_table

where temporary = 'Y‘

and duration = 'SYS$SESSION') loop

execute immediate 'truncate table '||c.table_name;

end loop;

end;

33 of 41

Managing Persistent Layer

 Client/Server

 Temporary table with
supporting information
(one row per session)

 Read - from support area.

 Write – via the engine:

 Get action from the
application

 Modify support area

 Send response to the
application

 Reason

 Eliminates about 75% of
repeated requests

 Web - idea
 Create persistent table

 Add session ID

 Estimate system could
slow down 3-5%

 Web - real life
 50%-200% slower

(only at peak times)

 Workload limit after which
the whole system started to
fall apart

34 of 41

Why is performance affected? (1)

Database running in ARCHIVELOG

All DML against SUPPORT table recorded

 Filled up about 85% of all logs!

All support changes must be persistent.

 Extra COMMITS occurred

 LOG FILE SYNC wait event count skyrocketed

Table had primary key (ID from a sequence)

Due to DML activity from hundreds of sessions, every

15 minutes, the database logged a deadlock.

Very high contention on some index blocks

35 of 41

 Cumulative heavy I/O load

 Individual requests take more time.

 Sessions were not released from connection pool fast enough.

 Total number of simultaneous sessions is 4 times more than

estimated.

 Each session used more memory, more temporary

segments, etc.

 Slowed down the system even more

 Especially true for I/O operations (since there were more

simultaneous requests).

 Quickly spirals into a slow-down and eventual stoppage of the

system

Why is performance affected? (2)

36 of 41

Database resources quickly became over-utilized

just by making a table persistent with a session

key.

Two core issues:

 1. How to decrease I/O?

 2. How to resolve index contention?

Why is performance affected? (3)

37 of 41

Solution

 Create a separate database instance

 New instance runs in NOARCHIVELOG mode

 New instance has only one schema.

 That schema contains only one table: SUPPORT INFO

 SUPPORT INFO table is hash-partitioned by session ID (1024
partitions)

 All indexes are local.

 Main schema has a database link and synonym

 Everything appears as though nothing has changed.

 All requests to the support table must include session ID (to use
local indexes).

 Some rewrite was required to enforce this rule.

38 of 41

Result

 System ran as fast as originally predicted.

 Extra waits caused by data cases via DBLink were negligible
(less than 0.01/request - average of 3000 requests/hour).

 No time lost writing logs

 Less I/O  less sessions  less resources used  less waits
 faster response  less sessions …

 Using a large number of partitions, less chances of
creating a “hot block”, since all indexes were local.

 Lessons learned:

 In the Oracle environment, everything is linked together.

 Any changes can lead to a “domino effect.”

39 of 41

Conclusions

Keep all nine of the potential areas for

encountering performance problems in mind.

 Investigate each one carefully to discover ways

in which performance can be improved.

 It is not just the database.

40 of 41

Dulcian’s BRIM® Environment

Full business rules-based development

environment

For Demo

Write “BRIM” on business card

Dulcian Vendor Presentation

 “Build Amazing Web 2.0 Applications using only

PL/SQL”

 Tuesday June 29th at 9:45AM in Delaware B

41 of 41

Contact Information

 Dr. Paul Dorsey – paul_dorsey@dulcian.com

 Michael Rosenblum – mrosenblum@dulcian.com

 Dulcian website - www.dulcian.com

Developer Advanced
Forms & Reports Designer

Handbook

Latest book:

Oracle PL/SQL for Dummies

Design Using UML
Object Modeling

